Role of TCAR in Patients with Symptomatic and Asymptomatic Carotid Stenosis

Rabih A. Chaer MD, MSc Professor and Chief UPMC Division of Vascular Surgery Co director, UPMC Heart and Vascular Institute

Disclosure

I have no actual or potential conflicts of interest in relation to this presentation

Evolution of Carotid Revascularization

DeBakey ME. Successful carotid endarterectomy for cerebrov ascular insufficiency. Ninetyear followup.JAMA

Carotid Revascularization

Transfemoral TransCarotid Artery Carotid **Revascularization Endarterectomy** Carotid (CEA) Stenting (TCAR) (TFCAS) Filter Expanded Catheter **〈TCAR Procedure〉** Copyright SVS 2004

@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVE

Proximal Protection with Flow Reversal

- Proximal protection
- Protects prior to crossing
- Improved particle capture

CHANGING

Why TCAR? Limitations of TF-CAS

Previous efforts to move to a less invasive procedure have not been successful

TCAR is different

TF-CAS

CREST: 10 Year Results

Any Stroke

30-day Stroke Rate: 4.1% CAS vs. 2.3% CEA (P=0.01)

Symptomatic/Asymptomatic Standard Surgical Risk Brott TG et al. N Engl J Med 2016;374: 1021-31.

Crossing the lesion Pitfalls of a TF approach Crossing the aortic arch

TCAR Outcomes

ROADSTER (N=208)

- Prospective, single arm, multi-center trial of TCAR
 Procedure
- High surgical risk patients
 - Symptomatic stenosis
 ≥50% stenosis
 - Asymptomatic stenosis
 ≥70% stenosis
 - 30-day stroke (ITT) = 1.4%

ROADSTER 2 (N=692)

- Prospective, open label, single arm, multicenter, post approval registry for patients undergoing TCAR
- High surgical risk patients
 - Symptomatic stenosis ≥50%
 - Asymptomatic stenosis ≥80%

30-day stroke (ITT) =

Kwolek CJ et al. Vasc Surg. 2015 Nov;62(5):1227-34 Kashyap et al. Stroke. 2020 Sep;51(9):2620-2629.

TCAR: FDA Approval

U.S. FOOD & DRUG			Follow FDA Er	n Español	SEARCH
ood Drugs Medical Devices Radi	liation-Emitting Products	Vaccines, Blood & Biologics	Animal & Veterinary	Cosmetics	Tobacco Products
arket Approval (PMA)	.) es				a 🗉
CDRH 510(k) DeNovo CRT Title	vo Registration & Listing Adver le 21 Radiation-Emitting Products	e Events Recalls PMA HDE (X-Ray Assembler Medsun Reports	Classification Standards CLIA TPLC		
New Search			Back to Search Res	ults	
changes. The panel track s Device	e labeling included below is the supplement and may not represent ENROUTE TRA	ne version at time of approval of esent the most recent labeling.	the original PMA or		
Generic N	Name Stent, Carotid	NOOM OT DOTENT OT OT OT			
Applicant	SILK ROAD MI 1213 Innsbruck Sunnyvale, CA	DICAL, INC Drive 94089			
PMA Num	mber P140026	05/18	/2015		
Date Rece	ceived 11/17/2014				
Decision	Date 05/18/2015				
Product C	Code <u>NIM</u>				
Docket N	Number 15M-1956				
Advisory Committe	ee Cardiovascular				
Clinical T	Trials NCT01685567				
Expedited Granted?	d Review ?				
Combinat Product	ation No				
Recalls	CDRH Recalls				
Approval APPROVA IS INDICA NEUROPI	I Order Statement ALFOR THE ENROUTE TR/ ATED FOR USE IN CONJUN PROTECTION SYSTEM (NPS	NSCAROTID STENT SYSTEM CTION WITH THE ENROUTE T) FOR THE TREATMENT OF P/	THIS DEVICE RANSCAROTID ATIENTS AT		

TCAR Surveillance Project

> Ann Surg. 2022 Aug 1;276(2):398-403. doi: 10.1097/SLA.00000000004496. Epub 2020 Sep 15.

TransCarotid Revascularization With Dynamic Flow Reversal Versus Carotid Endarterectomy in the Vascular Quality Initiative Surveillance Project

Mahmoud B Malas ¹, Hanaa Dakour-Aridi ¹, Vikram S Kashyap ², Jens Eldrup-Jorgensen ³, Grace J Wang ⁴, Raghu L Motaganahalli ⁵, Jack L Cronenwett ⁶, Marc L Schermerhorn ⁷

- TCAR vs. CEA
- **2016-2019**
- 53,869 patients
- Propensity matched

In-Hospital Outcome	CEA (N=6384)	TCAR (N=6384	RR (95% CI)
Stroke/death	1.6%	1.6%	1.01 (0.77–1.33)
Death	0.3%	0.4%	1.14 (0.64–2.02)
Ipsilateral stroke	1.0%	1.2%	1.21 (0.87–1.68)
Myocardial infarction	0.9%	0.5%	0.53 (0.35–0.83)
Stroke/death/MI	2.4%	2.0%	0.85 (0.67–1.07)
Cranial nerve injury	2.7%	0.4%	0.14 (0.08–0.23)

LIFE CHANGING MEDICINE

TCAR Surveillance Project

> Ann Surg. 2022 Aug 1;276(2):398-403. doi: 10.1097/SLA.00000000004496. Epub 2020 Sep 15.

TransCarotid Revascularization With Dynamic Flow Reversal Versus Carotid Endarterectomy in the Vascular Quality Initiative Surveillance Project

Mahmoud B Malas ¹, Hanaa Dakour-Aridi ¹, Vikram S Kashyap ², Jens Eldrup-Jorgensen ³, Grace J Wang ⁴, Raghu L Motaganahalli ⁵, Jack L Cronenwett ⁶, Marc L Schermerhorn ⁷

- TCAR vs. CEA
- 2016-2019
- 53,869 patients
- Propensity matched

TCAR by Symptom Status

CEA vs. TCAR: HR 1.04 (0.77, 2.80)

CEA vs. TCAR: HR 1.30 (1.04, 1.64)

Columbo et al. J Am Heart Assoc. 2022 Oct;11(19):e024964.

TCAR for Octogenarians

CEA TF-CAS TCAR

Kibrik et al., J Vasc Surg. 2022 Sep;76(3):769-777.e2.

CHANGING

TCAR for High-Risk Patients

Zhang et al., J Vasc Surg. 2022 Aug;76(2):474-481.e3.

TCAR for Standard Risk

- TCAR vs. CEA
- 2016-2019
- 38,025 patients
- Propensity matched

Table 3. Thirty-Day and 1-Year Outcomes After Transcarotid Artery Stenting or Carotid Endarterectomy Stenting in a Propensity Score-Matched Study Population Using Kaplan-Meier Estimates

		%				
		Transcarotid artery stenting	Carotid endarterectomy	Absolute difference, % (95% CI)	Relative risk (95% CI)	P value
30 ar)-d Stroke/death/MI 1d 1-y ipsilateral stroke ^a	3.0	2.6	0.40 (-0.43 to 1.24)	1.14 (0.87 to 1.50)	.34
30)-d					
	Stroke/death	1.8	1.5	0.34 (-0.18 to 0.90)	1.24 (0.90 to 1.71)	.21
	Stroke	1.6	1.1	0.42 (-0.06 to 0.93)	1.38 (0.97 to 1.96)	.07
	Death	0.3	0.4	-0.07 (-0.33 to 0.18)	0.84 (0.42 to 1.69)	.62
	Stroke/death/MI ^a	2.2	2.1	0.15 (-0.48 to 0.74)	1.07 (0.81 to 1.42)	.63
1-y						
	Ipsilateral stroke	1.6	1.1	0.52 (0.03 to 1.08)	1.49 (1.05 to 2.11)	.02
	Death	2.6	2.5	0.13 (-0.18 to 0.33)	1.04 (0.78 to 1.39)	.67

biang et al., JAMA Neurol. 2023 Mar 20;e230285.

What About Standard Risk?

Risk of Stroke, Death, and Myocardial Infarction Following Transcarotid Artery Revascularization vs Carotid Endarterectomy in Patients With Standard Surgical Risk

```
Patric Liang <sup>1</sup>, Jack L Cronenwett <sup>2</sup>, Eric A Secemsky <sup>3</sup>, Jens Eldrup-Jorgensen <sup>4</sup>,
Mahmoud B Malas <sup>5</sup>, Grace J Wang <sup>6</sup>, Brian W Nolan <sup>4</sup>, Vikram S Kashyap <sup>7</sup>,
Raghu L Motaganahalli <sup>8</sup>, Marc L Schermerhorn <sup>1</sup>
```

Affiliations + expand PMID: 36939697 PMCID: PMC10028539 (available on 2024-03-20) DOI: 10.1001/jamaneurol.2023.0285 > J Vasc Surg. 2022 Aug;76(2):474-481.e3. doi: 10.1016/j.jvs.2022.03.860. Epub 2022 Mar 31.

Transcarotid artery revascularization is associated with similar outcomes to carotid endarterectomy regardless of patient risk status

George Q Zhang ¹, Sanuja Bose ², David P Stonko ³, Christopher J Abularrage ⁴, Devin S Zarkowsky ⁵, Caitlin W Hicks ⁶

Affiliations + expand PMID: 35367564 PMCID: PMC9329175 (available on 2023-08-01) DOI: 10.1016/j.jvs.2022.03.860

Silk Road Medical Announces FDA Approval of Expanded Indications for the ENROUTE® Transcarotid Stent System

SUNNYVALE, Calif. – May 2, 2022 – Silk Road Medical, Inc. (Nasdaq: SILK), a company focused on reducing the risk of stroke and its devastating impact, today announced that that the U.S. Food and Drug Administration (FDA) approved expanded indications for the ENROUTE stent to include patients at standard risk for adverse events from carotid endarterectomy (CEA). Previously, the stent was approved for use only in patients with anatomic or physiological criteria that put them at high risk of complications from more invasive surgical procedures.

Limitations

- Anatomic requirements
 - >5cm = Working distance from clavicle to bifurcation ("access to lesion")
 - Circumferential calcium or fresh thrombus contraindicated
- Close oversight of cases by industry \rightarrow ? long term
- Limited data
 - Roadster 1, 2, 3 data & VQI-TSP
 - No RCT

Geometry

Getting the CCA Out

- Transverse or longitudinal incision between SCM heads
 immediately above clavicle
- Ultrasound to mark center
- Dissect caudal to get umbilical tape as low as possible
 - PTX risk

Carotid Dissection

Occurs in 1.4 – 5.7% of cases (Teter JVS 2021, Kwolek JVS 2015

Rescue Technique

- Maintain flow reversal if possible
- Wire and microcatheter into true-lumen
- Re-puncture
- Consider transfemoral and surgical bail-outs

Soft Plaque

- CT and duplex to evaluate plaque makeup
- Aggressive target-sized pre-dilation under flow reversal
- No post-dilation, deliberate reversal

TCAR vs. CEA in Practice

Clear advantage CEA

- Low bifurcation (CCA <5cm)
- Significant CCA disease
- Lesions with prohibitive calcium
- ICA diameter >9mm or <4mm

Liquid thrombus

Clear advantage TCAR

- High bifurcation
- Hostile neck (radiation, immobility)
- Reoperative site (CEA restenosis)
- Significant ICA tortuosity
- Circumferential calcification
- Unfavorable anatomy TF-CAS

Conclusions

- TCAR > TFCAS
- TCAR = CEA for short term outcomes
 - TCAR ?> CEA for high-risk & symptomatic patients
 - VQI data suggests at least equivalency in both high and standard risk outcomes
- Longer term outcomes (and ideally an RCT) for CEA vs. TCAR needed

SAVE THE DATE

